一.多层前馈神经网络 首先说下多层前馈神经网络,BP算法,BP神经网络之间的关系。多层前馈[multilayer feed-forward]神经网络由一个输入层、一个或多个隐藏层和一个输出层组成,后向传播(BP)算法在多层前馈神经网络上面进行学习,采用BP算法的(多层)前馈神经网络被称为BP神经网络
STL 简单讲解 网上有很多很好的资料可以参考 而直接看标准是最准确清晰的 vector stack queue / priority_queue deque array map / multimap set / multiset unordered_map unordered_set 关于指针和迭
017. Python中是否可以获取类的所有实例 转载请注明出处,https://www.cnblogs.com/wuxianfeng023 出处 https://docs.python.org/zh-cn/3.9/faq/programming.html#faq-multidimensional-
## .NET中的委托 .NET中的委托是一项重要功能,可以实现间接方法调用和函数式编程。 自.NET Framework 1.0起,委托在.NET中就支持多播(multicast)功能。通过多播,我们可以在单个委托调用中调用一系列方法,而无需自己维护方法列表。 即使在今天,委托的多播功能在桌面开发
粗排/精排的个性化多任务学习模型,能预估20多个不同的预估值,如点击率、有效播放率、播放时长、点赞率、关注率等,那如何用它来排序呢?从多任务学习到多目标排序,中间有一个过渡,即如何把这些预估值融合成一个单一的排序分,最后实现多目标精排。这也就引入了本文要介绍的正题:多目标融合(multi-task ...
任何一个数据库最主要功能之一是可扩展。如果不删除彼此,则尽可能较少锁竞争从而达到这个目的。由于read、write、update、delete是数据库中最主要且频繁进行的操作,所以并发执行这些操作时不被阻塞则显得非常重要。为了达到这种目的,大部分数据库使用多版本并发控制(Multi-Version
ChatGLM2-6B是开源中英双语对话模型ChatGLM-6B的第2代版本,引入新的特性包括更长的上下文(基于FlashAttention技术,将基座模型的上下文长度由ChatGLM-6B的2K扩展到了32K,并在对话阶段使用8K的上下文长度训练);更高效的推理(基于Multi-QueryAtte
摘要:该论文提出了一种基于预训练 BERT 的新神经网络架构,称为 M-SQL。基于列的值提取分为值提取和值列匹配两个模块。 本文分享自华为云社区《基于ModelArts实现Text2SQL》,作者:HWCloudAI。 M-SQL: Multi-Task Representation Learni
论文提出了多尺度视觉Transformer模型MViT,将多尺度层级特征的基本概念与Transformer模型联系起来,在逐层扩展特征复杂度同时降低特征的分辨率。在视频识别和图像分类的任务中,MViT均优于单尺度的ViT。 来源:晓飞的算法工程笔记 公众号 论文: Multiscale Vision
多项分布是二项分布的推广,描述了在n次试验中k种不同事件出现次数的概率分布。参数包括试验次数n、结果概率列表pvals(和为1)和输出形状size。PMF公式展示了各结果出现次数的概率。NumPy的`random.multinomial()`可生成多项分布数据。练习包括模拟掷骰子和抽奖活动。解决方案...
使用restTemplate在后端进行接口转发, 期间包括文件上传, 预览和下载. 还有一些字符串或css/js文件的读取. 1. 文件上传 参考: RestTemplate转发MultipartFile LinkedMultiValueMap params = ne
#### github地址:[https://github.com/heyu3913/el-cascader-onlylast-mutiple](https://github.com/heyu3913/el-cascader-onlylast-mutiple) ## 背景: ### 我们经常级联合选
目录 1、numa介绍 2、numa工具安装 3、numa查看 4、numa测试 5、numa打开与关闭 6、补充:服务器SMP、NUMA、MPP三大体系结构介绍 (1)、 SMP(Symmetric Muti-Processor) (2)、NUMA(Non-Uniform Memory Acces