设计模式之简单工厂模式(学习笔记)

定义 简单工厂模式(Simple Factory Pattern)是一种创建型设计模式,它定义一个用于创建对象的接口,但由一个单独的类来实现实际创建的工作。简单工厂模式通过在一个类中集中管理对象的创建过程,可以减少客户端与具体类之间的耦合,使得代码结构更加清晰和易于维护。通过专门定义一个类来负责创建

LeViT:Facebook提出推理优化的混合ViT主干网络 | ICCV 2021

论文提出了用于快速图像分类推理的混合神经网络LeVIT,在不同的硬件平台上进行不同的效率衡量标准的测试。总体而言,LeViT在速度/准确性权衡方面明显优于现有的卷积神经网络和ViT,比如在80%的ImageNet top-1精度下,LeViT在CPU上比EfficientNet快5倍 来源:晓飞的算

设计模式之装饰模式(学习笔记)

定义 装饰模式(Decorator Pattern),又称为包装模式,是一种结构型设计模式。它允许在不改变现有对象结构的情况下,动态地添加新的功能。通过将每个功能封装在单独的装饰器类中,并且这些装饰器类通过引用原始对象来实现功能的组合,从而提供了灵活性和可扩展性的优势。装饰模式避免了通过继承方式增加

CaiT:Facebook提出高性能深度ViT结构 | ICCV 2021

CaiT通过LayerScale层来保证深度ViT训练的稳定性,加上将特征学习和分类信息提取隔离的class-attention层达到了很不错的性能,值得看看 来源:晓飞的算法工程笔记 公众号 论文: Going deeper with Image Transformers 论文地址:https:/

还在困惑需要多少数据吗?来看看这份估计指南 | CVPR 2022

论文基于实验验证,为数据需求预测这一问题提供了比较有用的建议,详情可以直接看看Conclusion部分。 来源:晓飞的算法工程笔记 公众号 论文: How Much More Data Do I Need? Estimating Requirements for Downstream Tasks 论

CvT:微软提出结合CNN的ViT架构 | 2021 arxiv

CvT将Transformer与CNN在图像识别任务中的优势相结合,从CNN中借鉴了多阶段的层级结构设计,同时引入了Convolutional Token Embedding和Convolutional Projection操作增强局部建模能力,在保持计算效率的同时实现了卓越的性能。此外,由于卷积的

DeepViT:字节提出深层ViT的训练策略 | 2021 arxiv

作者发现深层ViT出现的注意力崩溃问题,提出了新颖的Re-attention机制来解决,计算量和内存开销都很少,在增加ViT深度时能够保持性能不断提高 来源:晓飞的算法工程笔记 公众号 论文: DeepViT: Towards Deeper Vision Transformer 论文地址:https

DDP:微软提出动态detection head选择,适配计算资源有限场景 | CVPR 2022

DPP能够对目标检测proposal进行非统一处理,根据proposal选择不同复杂度的算子,加速整体推理过程。从实验结果来看,效果非常不错 来源:晓飞的算法工程笔记 公众号 论文: Should All Proposals be Treated Equally in Object Detectio

DVT:华为提出动态级联Vision Transformer,性能杠杠的 | NeurIPS 2021

论文主要处理Vision Transformer中的性能问题,采用推理速度不同的级联模型进行速度优化,搭配层级间的特征复用和自注意力关系复用来提升准确率。从实验结果来看,性能提升不错 来源:晓飞的算法工程笔记 公众号 论文: Not All Images are Worth 16x16 Words:

Swin Transformer:最佳论文,准确率和性能双佳的视觉Transformer | ICCV 2021

论文提出了经典的Vision Transormer模型Swin Transformer,能够构建层级特征提高任务准确率,而且其计算复杂度经过各种加速设计,能够与输入图片大小成线性关系。从实验结果来看,Swin Transormer在各视觉任务上都有很不错的准确率,而且性能也很高 来源:晓飞的算法工程

webdav协议及我的笔记方案(私有部署)

背景 用markdown用于文章写作,有几年时间了,不是很喜欢折腾,主要就是在电脑上写,用的笔记软件就是typora。由于里面有很多工作相关的,以及个人资料相关的(包含了各种账号、密码啥的),所以不敢往各种云服务上放,还是想着数据由自己来管着。 自己管数据的话,就是数据存储到哪里的问题,有很多朋友是

《Programming from the Ground Up》阅读笔记:p1-p18

《Programming from the Ground Up》学习第1天,p1-18总结,总计18页。 一、技术总结 1.fetch-execute cycle p9, The CPU reads in instructions from memory one at a time and exec

LINUX命令-sed

sed命令是用于对文本文件做内容操作的神器,常见的增删改都可以,熟练运用可提高shell脚本编写能力和在terminal下的工作效率。

P2467 [SDOI2010] 地精部落 学习笔记

DP 显然我固定第一个是峰,然后再乘以2就是答案,因为一个合法的反转之后也是合法的而且谷峰颠倒了 发现如果设\(dp[i][j]\)表示前\(i\)个山脉,第\(i\)个山脉是高度\(j\)的答案,然后填第\(i\)个的时候不知道会不会重复,所以这个状态挂了,重新找个状态设设。 所以我们改变考虑对象

Qt开发技术:Q3D图表开发笔记(四):Q3DSurface三维曲面图颜色样式详解、Demo以及代码详解

前言 qt提供了q3d进行三维开发,虽然这个框架没有得到大量运用也不是那么成功,性能上也有很大的欠缺,但是普通的点到为止的应用展示还是可以的。 其中就包括华丽绚烂的三维图表,数据量不大的时候是可以使用的。 前面介绍了基础的q3d散点图、柱状图、三维曲面图,本片深入对三维曲面图支持的颜色表现方式进行探

平衡树 Treap & Splay [学习笔记]

平衡树 \(\tt{Treap}\) & \(\tt{Splay}\) 壹.单旋 \(\tt{Treap}\) 首先了解 \(\tt{BST}\) 非常好用的东西,但是数据可以把它卡成一条链 \(\dots\) 于是,我们将 \(\tt{Tree}\) 与 \(\tt{heap}\) (堆) 合并,

CeiT:商汤提出结合CNN优势的高效ViT模型 | 2021 arxiv

论文提出CeiT混合网络,结合了CNN在提取低维特征方面的局部性优势以及Transformer在建立长距离依赖关系方面的优势。CeiT在ImageNet和各种下游任务中达到了SOTA,收敛速度更快,而且不需要大量的预训练数据和额外的CNN蒸馏监督,值得借鉴 来源:晓飞的算法工程笔记 公众号 论文:

PVT:特征金字塔在Vision Transormer的首次应用,又快又好 | ICCV 2021

论文设计了用于密集预测任务的纯Transformer主干网络PVT,包含渐进收缩的特征金字塔结构和spatial-reduction attention层,能够在有限的计算资源和内存资源下获得高分辨率和多尺度的特征图。从物体检测和语义分割的实验可以看到,PVT在相同的参数数量下比CNN主干网络更强大

T2T-ViT:更多的局部结构信息,更高效的主干网络 | ICCV 2021

论文提出了T2T-ViT模型,引入tokens-to-token(T2T)模块有效地融合图像的结构信息,同时借鉴CNN结果设计了deep-narrow的ViT主干网络,增强特征的丰富性。在ImageNet上从零训练时,T2T-ViT取得了优于ResNets的性能MobileNets性能相当 来源:晓

Google出品的NotebookLM 人工智能笔记本,一款基于RAG的personalized AI产品

Google推出了实验性的NotebookLM产品,一款基于RAG的个性化AI助手产品,基于用户提供的可信信息,通过RAG,帮助用户洞察和学习参考内容,然后借助AI整理笔记,转换为用户最终需要的大纲、博客、商业计划书等最终目的。